Some publications can be downloaded from this page. Please respect the publishers' copyrights: Articles may be downloaded for personal use only. Any other use requires prior permission of the author and the publisher.

Due to copyright restrictions we cannot post all publications to the Internet. If you are interested in a copy (electronic or hardcopy), please do not hesitate to write!

Publications

  1. U. Deiters and G. M. Schneider, Fluid mixtures at high pressures. Computer calculations of the phase equilibria and the critical phenomena in fluid binary mixtures from the Redlich–Kwong equation of state. Ber. Bunsenges. Phys. Chem. 80, 1316–1321 (1976).
    DOI: 10.1002/bbpc.19760801215
  2. C. Hoheisel and U. Deiters, A molecular dynamics study of the liquid mixture CHCl3/CCl4 on the basis of Lennard-Jones type potentials. Ber. Bunsenges. Phys. Chem. 81, 1225–1230 (1977).
    DOI: 10.1002/bbpc.19770811206
  3. C. Hoheisel and U. Deiters, High pressure molecular dynamics of the partially miscible fluid mixture neon/krypton. Mol. Phys. 37, 95–109 (1979).
    DOI: 10.1080/00268977900100091
  4. U. K. Deiters, A new semiempirical equation of state for fluids. I. Derivation. Chem. Eng. Sci. 36, 1139–1146 (1981).
    DOI: 10.1016/0009-2509(81)85061-0
  5. U. K. Deiters, A new semiempirical equation of state for fluids. II. Application to pure substances. Chem. Eng. Sci. 36, 1146–1151 (1981).
    DOI: 10.1016/0009-2509(81)85062-2
  6. J. C. G. Calado, U. Deiters, and W. B. Streett, Liquid-vapour equilibrium in the krypton + methane system. J. Chem. Soc. Faraday Trans. I 77, 2503–2513 (1981).
    DOI: 10.1039/F19817702503
  7. U. K. Deiters, A new semiempirical equation of state for fluids. III. Application to phase equilibria in binary mixtures. Chem. Eng. Sci. 37, 855–861 (1982).
    DOI: 10.1016/0009-2509(82)80173-5
  8. U. K. Deiters, Coordination numbers for rigid spheres of different size — Estimating the number of next-neighbour interactions in a mixture. Fluid Phase Equilib. 8, 123–129 (1982).
    DOI: 10.1016/0378-3812(82)80030-7
  9. U. K. Deiters, Calculation and prediction of fluid phase equilibria from an equation of state. Fluid Phase Equilib. 10, 173–182 (1983).
    DOI: 10.1016/0378-3812(83)80032-6
  10. C. Hoheisel, U. K. Deiters and K. Lucas, The extension of pure fluid thermodynamic properties to supercritical mixtures — A comparison of current theories with computer data over a large region of states. Mol. Phys. 49, 159–170 (1983).
    DOI: 10.1080/00268978300101091
  11. U. K. Deiters, Coordination numbers for rigid spheres of different sizes — Reply to a letter by G. H. Eduljee. Fluid Phase Equilib. 12, 193–197 (1983).
    DOI: 10.1016/0378-3812(83)85022-5
  12. U. K. Deiters, Fluid phase equilibria at high pressures: Correlations and predictions. J. M. Haile and G. A. Mansoori (eds.), Molecular-Based Study of Fluids, ACS Advances in Chemistry Series, Vol. 204, pp. 353–364, American Chemical Society, Washington 1983.
  13. U. K. Deiters, Special aspects of the calculation of phase equilibria in cryogenic mixtures at very high pressures. Fluid Phase Equilib. 13, 109–120 (1983).
    DOI: 10.1016/0378-3812(83)80085-5
  14. U. K. Deiters and I. Swaid, Calculations of fluid-fluid and solid-fluid phase equilibria in binary mixtures at high pressures. Ber. Bunsenges. Phys. Chem. 88, 791–796 (1984).
    DOI: 10.1002/bbpc.19840880905
  15. U. K. Deiters, A modification of Newton-Raphson algorithm for phase equilibria calculations using numerical differentiation of the Gibbs energy. Fluid Phase Equilib. 19, 287–293 (1985).
    DOI: 10.1016/0378-3812(85)87022-9
  16. U. K. Deiters, Calculation of equilibria between fluid and solid phases in binary mixtures at high pressures from equations of state. Fluid Phase Equilib. 20, 275–282 (1985).
    DOI: 10.1016/0378-3812(85)90046-9
  17. D. Chokappa, P. Clancy, W. B. Streett, U. K. Deiters, and A. Heintz, Theoretical methods for the prediction of phase equilibria in hydrogen-containing mixtures. Chem. Eng. Sci. 40, 1831–1841 (1985).
    DOI: 10.1016/0009-2509(85)80118-4
  18. J. B. Ott, C. E. Stouffer, G. V. Cornett, B. F. Woodfield, R. C. Wirthlin, J. J. Christensen, and U. K. Deiters, Excess enthalpies for (ethanol + water) at 298.15 K and pressures of 0.4, 5, 10, and 15 MPa. J. Chem. Thermodynamics 18, 1–12 (1986).
    DOI: 10.1016/0021-9614(86)90036-4
  19. M. Luckas, K. Lucas, U. K. Deiters, and K. E. Gubbins, Integrals over pair- and triplet-correlation functions for the Lennard-Jones (12-6)-fluid. Mol. Phys. 57, 241–253 (1986).
    DOI: 10.1080/00268978600100191
  20. U. K. Deiters, Calculation of fluid-fluid and solid-fluid equilibria in cryogenic mixtures at high pressures. K. C. Chao and R. L. Robinson, Jr. (eds.), Equations of State — Theories and Applications, ACS Symposium Series Vol. 300, pp. 371–388, American Chemical Society, Washington 1986.
  21. U. K. Deiters and G. M. Schneider, High pressure phase equilibria: Experimental methods. Fluid Phase Equilib. 29, 145–160 (1986).
    DOI: 10.1016/0378-3812(86)85018-X
  22. U. K. Deiters, Density-dependent mixing rules for the calculation of fluid phase equilibria at high pressures. Fluid Phase Equilib. 33, 267–293 (1987).
    full text PDF file (1968 kB). Copyright 1987 Elsevier.
    DOI: 10.1016/0378-3812(87)85041-0
  23. J. R. S. Machado, W. B. Streett, and U. K. Deiters, PVT measurements of hydrogen/methane mixtures at high pressures. J. Chem. Eng. Data 33, 148–152 (1988).
    DOI: 10.1021/je00052a027
  24. U. K. Deiters and I. L. Pegg, Systematic investigation of the phase behaviour in binary fluid mixtures. I. Calculations based on the Redlich–Kwong equation of state. J. Chem. Phys. 90, 6632–6641 (1989).
    full text PDF file (1035 kB). Copyright 1989 American Institute of Physics.
    DOI: 10.1063/1.456280
  25. U. K. Deiters, Minimum image convention coding of microcomputers, Mol. Simulation 3, 343–344 (1989).
    DOI: 10.1080/08927028908031386
  26. U. K. Deiters, Extended 1-fluid theory for mixtures containing non-spherical molecules. Fluid Phase Equilib. 48, 185–196 (1989).
    DOI: 10.1016/0378-3812(89)80201-8
  27. P. J. Becker and U. K. Deiters, Liquid–liquid phase equilibria in the methanol + 2,2,4-trimethylpentane and methanol + methylcyclopentane systems at pressures from 5 to 120 MPa. J. Chem. Eng. Data 35, 449–453 (1990).
    DOI: 10.1021/je00062a023
  28. U. K. Deiters, The equation of state of soft repulsive spherical molecules. Mol. Phys. 74, 153–160 (1991).
    DOI: 10.1080/00268979100102131
  29. Th. Kraska and U. K. Deiters, Systematic investigation of the phase behavior in binary fluid mixtures. II. Calculations based on the Carnahan–Starling–Redlich–Kwong equation of state. J. Chem. Phys. 96, 539–547 (1992).
    full text PDF file (611 kB). Copyright 1992 American Institute of Physics.
    DOI: 10.1063/1.462490
  30. D. A. Jonah and U. K. Deiters, On the VDW1 mixing rules applied to conformal binary mixtures at infinite dilution. A systematic improvement. Mol. Phys. 77, 1071–1083 (1992).
  31. S. Küppers, F. P. Schmitz, and U. K. Deiters, The free volume as a unified basis for comparison of pressure- and composition programming in supercritical fluid chromatography (SFC). Fresenius J. Anal. Chem. 344, 463–466 (1992).
  32. U. K. Deiters, M. Neichel, and E. U. Franck, Prediction of the thermodynamic properties of hydrogen–oxygen mixtures from 80 to 373 K and to 100 MPa. Ber. Bunsenges. Phys. Chem. 97, 649–657 (1993).
  33. U. K. Deiters, Application of an EOS chain association theory to the calculation of thermodynamic properties of (alkane + 1-alkanol) mixtures. Fluid Phase Equilib. 89, 229–242 (1993).
  34. J. M. H. Levelt Sengers, U. K. Deiters, U. Klask, and P. Swidersky, and G. M. Schneider, Application of the Taylor dispersion method in supercritical fluids. Int. J. Thermophys. 14, 893–922 (1993).
  35. Th. Kraska and U. K. Deiters, An equation of state for pure fluids describing the critical region. Int. J. Thermophys. 15, 261–281 (1994).
  36. F.-G. Klärner, B. Krawczyk, V. Ruster, and U. K. Deiters, Evidence for pericyclic and stepwise processes in the cyclodimerization of chloroprene and 1,3-butadiene from pressure-dependence and stereochemistry. Experimental and theoretical volumes of activation and reaction. J. Amer. Chem. Soc. 116, 7646–7657 (1994).
  37. A. van Pelt, U. K. Deiters, C. J. Peters, and J. de Swaan Arons, The limiting behaviour at high temperatures of the simplified-perturbed-hard-chain theory. Fluid Phase Equilib. 90, 45–56 (1993).
    DOI: 10.1016/0378-3812(93)85003-5
  38. U. K. Deiters, Global phase diagrams and their applications to fluid mixtures at high pressures. G. Brunner and M. Perrut (eds.), Proceedings of the 3rd International Symposium on Supercritical Fluids, 1, pp. 77–82, Institut National Polytechnique de Lorraine, Vandoeuvre-les-Nancy 1994.
  39. F.-G. Klärner, B. Krawczyk, V. Ruster, and U. K. Deiters, The pressure dependence of the dimerization of 1,3-butadiene: Experimental and theoretical volumes of activation and reaction. High Pressure Research 13, 1–5 (1994).
  40. U. K. Deiters and S. L. Randzio, The equation of state for molecules with shifted Lennard-Jones pair potentials. Fluid Phase Equilib. 103, 199–212 (1995).
    DOI: 10.1016/0378-3812(94)02577-N
  41. A. van Pelt, U. K. Deiters, C. J. Peters, and J. de Swaan Arons, Global phase behaviour based on the simplified-perturbed-hard-chain equation of state. J. Chem. Phys. 102, 3361–3375 (1995).
    DOI: 10.1063/1.469210
  42. J. C. G. Calado, U. K. Deiters, J. N. C. Lopes, and L. P. N. Rebelo, The excess molar Gibbs energy of nuclidic liquid mixtures. Ber. Bunsenges. Phys. Chem. 99, 721–729 (1995).
  43. S. L. Randzio and U. K. Deiters, Thermodynamic testing of equations of state of dense simple liquids. Ber. Bunsenges. Phys. Chem. 99, 1179–1186 (1995).
  44. A. Bolz, N. Dahmen, and U. K. Deiters, Calculation of excess properties, phase equilibria, and global phase diagrams of mixtures containing refrigerants. High Temperatures — High Pressures 27/28, 215–226 (1995/1996).
    DOI: 10.1068/hte9
  45. Nguyen Van Nhu and U. K. Deiters, Application of a generalized van der Waals equation of state to several non-polar mixtures. Fluid Phase Equilib. 118, 153–174 (1996).
  46. Nguyen Van Nhu and U. K. Deiters, Application of a generalized van der Waals equation of state to several non-polar mixtures. Ph. R. von Rohr and Ch. Trepp (eds.), High Pressure Chemical Engineering, Process Technology Proceedings, Vol. 12, pp. 405–410, Elsevier, Amsterdam 1996.
  47. J. Kohlbruch and U. K. Deiters, Calculation of high-pressure phase equilibria involving light gases. Ph. R. von Rohr and Ch. Trepp (eds.), High Pressure Chemical Engineering, Process Technology Proceedings, Vol. 12, pp. 451–456, Elsevier, Amsterdam 1996.
  48. J. C. G. Calado, U. K. Deiters, and E. J. M. Filipe, Liquid mixtures involving cyclic molecules: (vapour + liquid) equilibria of (xenon + ethylene oxide). J. Chem. Thermodynamics 28, 201–207 (1996).
  49. M. Hloucha and U. K. Deiters, Monte Carlo simulations of acetonitrile with an anisotropic polarizable molecular model. Mol. Phys. 90, 593–597 (1997).
  50. U. K. Deiters, Some remarks on the nomenclature of refrigerants. Fluid Phase Equilib. 132, 265–270 (1997).
    DOI: 10.1016/S0378-3812(96)03232-3
  51. U. K. Deiters and K. M. de Reuck, Guidelines for publication of equations of state. I. Pure fluids. Pure Appl. Chem. 69, 1237–1249 (1997).
    DOI: 10.1351/pac199769061237
  52. J. H. Dymond and U. K. Deiters (eds.), Proceedings of the Second International Workshop on Vapour–Liquid Equilibria and Related Properties in Binary and Ternary Mixtures of Ethers, Alkanes and Alkanols, Fluid Phase Equilib. 133(1–2), Elsevier, Amsterdam 1997.
  53. M. Hornig, Th. Kraska, and U. K. Deiters, Verbindung zwischen Forschung und Lehre durch den Einsatz neuer Medien. Universität zu Köln, Forschungsbericht Multimedia, pp. 127–131, Universität zu Köln 1997.
  54. M. Hloucha and U. K. Deiters, Fast coding of the minimum image convention. Mol. Simulation 20, 239–244 (1998).
  55. M. Hloucha and U. K. Deiters, Monte Carlo study of the thermodynamic properties and the static dielectric constant of liquid trifluoromethane. Fluid Phase Equilib. 149, 41–56 (1998).
  56. U. K. Deiters, L. Z. Boshkov, L. V. Yelash, and V. A. Mazur, Prediction of high-temperature immiscibility islands for two-component fluids (in Russian). Doklady Russ. Akad. Nauk 358, 497–501 (1998).
  57. U. K. Deiters, L. Z. Boshkov, L. V. Yelash, and V. A.Mazur, A new mechanism of the formation of four-phase separation in two-component fluids (in Russian). Doklady Russ. Akad. Nauk 359, 343–347 (1998).
  58. U. K. Deiters and K. M. de Reuck, Guidelines for publication of equations of state. I. Pure fluids. Chem. Eng. J. 69, 69–81 (1998). [reprinted from Pure & Appl. Chem.].
  59. E. J. M. Filipe, U. K. Deiters and J. C. G. Calado, Liquid mixtures involving triangular molecules: (vapour + liquid) equilibria of (xenon + trimethylboron). J. Chem. Thermodynamics 30, 1543–1553 (1998).
    DOI: 10.1006/jcht.1998.0429
  60. A. Bolz, U. K. Deiters, C. J. Peters, and de Th. W. de Loos, Nomenclature for phase diagrams with particular reference to vapour–liquid and liquid–liquid equilibria. Pure Appl. Chem. 70, 2233–2257 (1998).
    DOI: 10.1351/pac199870112233
  61. U. K. Deiters, M. Hloucha, and K. Leonhard, Experiments?—No, thank you! Letcher, T. M. (ed.), Chemistry for the 21st Century: Chemical Thermodynamics, IUPAC Monograph Series, pp. 187–195, Blackwell Science, Oxford 1999.
  62. L. V. Yelash, Th. Kraska, and U. K. Deiters, Closed-loop critical curves in simple van der Waals fluid models consistent with the packing fraction limit. J. Chem. Phys. 110, 3079–3084 (1999).
    full text PDF file (137 kB). Copyright 1999 American Institute of Physics.
    DOI: 10.1063/1.477904
  63. U. K. Deiters, What is in a name? European Science Editing 25, 24 (1999).
  64. U. K. Deiters and J. H. Dymond (eds.), Proceedings of the Third International Workshop on Vapour–Liquid Equilibria and Related Properties in Binary and Ternary Mixtures of Ethers, Alkanes and Alkanols, Fluid Phase Equilib. 156(1–2), Elsevier, Amsterdam 1999.
  65. L. E. S. de Souza and U. K. Deiters, Nonideality of the system NH3–H2 – N2: Comparison of equation of state and simulation predictions with experimental data. Phys. Chem. Chem. Phys. 1, 4069–4074 (1999). full text PDF file (135 kB) provided by Royal Society of Chemistry, Cambridge, United Kingdom
  66. M. Bluma and U. K. Deiters, A classification of phase diagrams of ternary fluid systems. Phys. Chem. Chem. Phys. 1, 4307–4313 (1999).
    full text PDF file (505 kB) provided by Royal Society of Chemistry, Cambridge, United Kingdom
  67. U. K. Deiters, Ein modulares Programmsystem zur Berechnung der thermodynamischen Eigenschaften von Fluiden. Chemie Ingenieur Technik 71, 1179–1181 (1999).
  68. U. K. Deiters and I. L. Boshkova, A model for the calculation of the velocity profile for the flow of acompressible fluid in a capillary (in Russian). Kholodilna Tekhn. Tekhnol. (Refrigeration Eng. Technol.) 63, 18–20 (1999).
  69. U. K. Deiters, Remarks on publications dealing with equations of state. Fluid Phase Equilib. 161, 205 (1999).
  70. U. K. Deiters and K. M. de Reuck, Guidelines for publication of equations of state. I. Pure fluids. Fluid Phase Equilib. 161, 206–219 (1999) [reprinted from Pure & Appl. Chem.].
  71. U. K. Deiters, Estimation of excess volumes and chemical reaction parameters by computer simulations using fused-hard-sphere potentials. Entropie 224/225, 117–123 (2000).
    full text PDF file (6.2 MB). Copyright 2000 Éditions Bartheye, Paris.
  72. J. F. Kenney and U. K. Deiters, The evolution of multicomponent systems at high pressures: IV. The genesis of optical activity in high-density, abiotic systems. Phys. Chem. Chem. Phys. 2, 3163–3174 (2000).
    full text PDF file (289 kB) provided by Royal Society of Chemistry, Cambridge, United Kingdom
  73. U. K. Deiters, A modular program system for the calculation of thermodynamic properties of fluids. Chem. Eng. Technol. 23, 581–584 (2000).
  74. K. Leonhard and U. K. Deiters, Monte Carlo simulations of neon and argon using ab initio potentials. Mol. Phys. 98, 1603–1616 (2000).
  75. L. E. Stancato de Souza and U. K. Deiters, Modeling of the N2O4–NO2 reacting system. Phys. Chem. Chem. Phys. 2, 5606–5613 (2000).
    full text PDF file (161 kB) provided by Royal Society of Chemistry, Cambridge, United Kingdom
  76. E. Matteoli and U. K. Deiters (eds.), Proceedings of the First International Workshop on Thermodynamic, Thermochemical and Transport Properties of Halocarbons and Their Mixtures, Fluid Phase Equilib. 174(1–2), Elsevier, Amsterdam 2000.
  77. I. L. Boshkova, U. K. Deiters and V. A. Mazur, Supercritical laminar fluid flow in capillaries (in Russian). Kholodilnaya Tekhn. Tekhnol. (Refrigeration Eng. Technol.) 66, 56–60 (2000).
  78. U. K. Deiters, Shape effects on the thermodynamic properties of dense fluid mixtures of enantiomers. Fluid Phase Equilib. 182, 17–26 (2001).
  79. U. K. Deiters, Comment on: S. Bobbo, L. Fedele, M. Scattolini, and R. Camporese: Vapor + liquid equilibrium measurements and correlation of the binary refrigerant mixtures difluoromethane (HFC-32) + 1,1,1,2,3,3-hexafluoropropane (HFC-236ea) and pentafluoroethane (HFC-125) + 1,1,1,2,3,3-hexafluoropropane (HFC-236ea) at 288.6, 303.2, and 318.2 K (Int. J. Thermophysics 21:781 (2000)). Int. J. Thermophysics 22, 1869–1870 (2001).
  80. T. Boublík, U. K. Deiters, and Th. W. de Loos (eds.), ICCT 2000 — Proceedings of Symposium 6c (Fluid Phase Equilibria), Fluid Phase Equilib. 182(1–2), Elsevier, Amsterdam 2001.
  81. U. K. Deiters, The calculation of densities from cubic equations of state. AIChE J. 48, 882–886 (2002)
    DOI: 10.1002/aic.690480421 ; 51, 3310 (2005).
    DOI: 10.1002/aic.10660 (reply to 10.1002/aic.10659)
  82. K. Leonhard and U. K. Deiters, Monte Carlo simulations of nitrogen using an ab initio potential. Mol. Phys. 100, 2571–2585 (2002).
    DOI: 10.1080/00268970110118303
  83. U. K. Deiters, Some comments on the double retrograde vaporization. J. Chem. Thermodynamics 35, 583–589 (2003).
    full text PDF file (93 kB). Copyright 2003 Elsevier.
    DOI: 10.1016/S0021-9614(02)00238-0
  84. A. E. Nasrabad and U. K. Deiters, Prediction of thermodynamic properties of krypton by Monte Carlo simulation using ab initio interaction potentials. J. Chem. Phys. 119, 947–952 (2003).
    full text PDF file (67 kB). Copyright 2003 American Institute of Physics.
    DOI: 10.1063/1.1579671
  85. U. K. Deiters, Comments on a publication: Solubilities of hydroquinone and quinone in supercritical carbon dioxide. Fluid Phase Equilib. 207, 319–321 (2003).
    DOI: 10.1016/S0378-3812(03)00024-4
  86. U. K. Deiters and A. Laesecke (eds.), Proceedings of the Third International Workshop on Thermodynamic, Thermochemical and Transport Properties of Halocarbons and Their Mixtures, Fluid Phase Equilibria 210(1), Elsevier, Amsterdam 2003.
    DOI: 10.1016/S0378-3812(03)00156-0
  87. U. K. Deiters and I. L. Boshkova, Determination of the bulk viscosity coefficient of a fluid in the vicinity of a liquid–gas critical point (in Russian). Kholodilnaya Tekhn. Tekhnol. (Refrigeration Eng. Technol.) 84, 45–48 (2003).
  88. U. K. Deiters, Correlation and prediction of high-pressure phase equilibria and related thermodynamic properties of simple fluid mixtures. G. Brunner (ed.), Supercritical Fluids as Solvents and Reaction Media, Ch. 1.8, pp. 185–209, Elsevier, Amsterdam 2004.
  89. A. E. Nasrabad, R. Laghaei, and U. K. Deiters, Prediction of the thermophysical properties of pure neon, pure argon, and the binary mixtures neon-argon and argon-krypton by Monte Carlo simulation using ab initio potentials. J. Chem. Phys. 121, 6423–6434 (2004).
    full text PDF file (173 kB). Copyright 2004 American Institute of Physics.
    DOI: 10.1063/1.1783271
  90. O. Coskuner and U. K. Deiters, Investigation of hydrophobic interactions by Monte Carlo simulation. Z. Phys. Chem. 220, 349–369 (2006).
    full text PDF file (328 kB) provided by Oldenbourg Wissenschaftsverlag, München, Germany (now part of de Gruyter)
    DOI: 10.1524/zpch.2006.220.3.349
  91. S. E. Quiñones-Cisneros and U. K. Deiters, Generalization of the friction theory for viscosity modeling. J. Phys. Chem. B 110 12820–12834 (2006).
    DOI: 10.1021/jp0618577
  92. U. K. Deiters and S. L. Randzio, A combined determination of phase diagrams of asymmetric binary mixtures by equations of state and transitiometry. Fluid Phase Equilib. 260 87–97 (2007).
    DOI: 10.1016/j.fluid.2006.09.004
  93. O. Coskuner and U. K. Deiters, Hydrophobic interactions of xenon by Monte Carlo simulations. Z. Phys. Chem. 221, 785–799 (2007).
    full text PDF file (222 kB) provided by Oldenbourg Wissenschaftsverlag, München, Germany (now part of de Gruyter)
    DOI: 10.1016/j.ces.2007.11.029
  94. Th. Kraska, S. E. Quiñones-Cisneros, and U. K. Deiters, Correlation of binary diffusion coefficients of organic substances in supercritical carbon dioxide based on equations of state. J. Supercrit. Fluids 42 212–218 (2007).
    DOI: 10.1016/j.supflu.2007.03.003
  95. S. E. Quiñones-Cisneros and U. K. Deiters, Reference correlation of the viscosity of methane, implemented in REFPROP v. 8 (NIST Reference Fluid Thermodynamic and Transport Properties Database), Boulder 2007.
  96. H.-W. Xiang and U. K. Deiters, A new generalized corresponding-states equation of state for the extension of the Lee–Kesler equation to fluids consisting of polar and larger nonpolar molecules. Chem. Eng. Sci. 63 1490–1496 (2008).
    DOI: 10.1016/j.ces.2007.11.029
  97. S. E. Quiñones-Cisneros, K. Schmidt, J. Creek, and U. K. Deiters, Friction theory modelling of the non-Newtonian viscosity of crude oils. Energy Fuels 22 799–804 (2008).
    DOI: 10.1016/j.ces.2007.11.029
  98. S. E. Quiñones-Cisneros, U. K. Deiters, R. E. Rozas, T. Kraska, A new model for the correlation of the surface tension based on friction theory. J. Phys. Chem. B 113 3504–3511 (2009).
    DOI: 10.1021/jp8073255
  99. P. V. Ramírez-González, J. P. Aguayo, S. E. Quiñones-Cisneros, U. K. Deiters, Non-Newtonian viscosity modeling of crude oils—comparison between models. Int. J. Thermophys., 30 1089–1105 (2009).
    DOI: 10.1007/s10765-009-0578-002
  100. B. Wittich, U. K. Deiters, The influence of the simulation box geometry in solid state molecular simulations—Phase behavior of lithium iodide in a dynamic Monte Carlo simulation. Mol. Simulation 36, 364–372 (2010).
    DOI: 10.1080/08927020903483320
  101. O. L. Boshkova, U. K. Deiters, Soft repulsion and the behavior of equations of state at high pressures. Int. J. Thermophys. 31, 227–252 (2010).
    DOI: 10.1007/s10765-010-0727-7
  102. B. Wittich, U. K. Deiters, Calculating thermodynamic properties of an ionic liquid with Monte Carlo simulations with an orthorhombic and a cubic simulation box. J. Phys. Chem. B 114, 8954–8960 (2010).
    DOI: 10.1021/jp101676m
    temporary link to full-text PDF file
  103. U. K. Deiters, Th. Kraska, High-Pressure Fluid Phase Equilibria — Phenomenology and Computation, vol. 2 of Supercritical Fluid Science and Technology series, Elsevier, Amsterdam, 2012
    ISBN 978-0444563477
  104. U. K. Deiters, Calculation of the apparent heat capacity in scanning calorimetry experiments on fluid phase equilibria. J. Supercrit. Fluids 66, 66–72 (2012).
    DOI: 10.1016/j.supflu.2011.11.019
  105. S. E. Quiñones-Cisneros, M. L. Huber, U. K. Deiters, Correlation for the viscosity of sulfur hexafluoride (SF6) from the triple point to 1000 K and pressures to 50 MPa. J. Phys. Chem. Ref. Data 42, 023102.1–11 (2012).
    DOI: 10.1063/1.3702441
  106. S. E. Quiñones-Cisneros, U. K. Deiters, U. K., An efficient algorithm for the calculation of phase envelopes of fluid mixtures. Fluid Phase Equilib. 329, 22–31 (2012).
    DOI: 10.1016/j.fluid.2012.05.023
  107. A. R. Imre, U. K. Deiters, Th. Kraska, and I. Tiselj, The pseudocritical regions for supercritical water. Nucl. Eng. Des. 252, 179–183 (2012).
    DOI: 10.1016/j.nucengdes.2012.07.007"
  108. U. K. Deiters, The isothermal van't Hoff equation for phase equilibria—a forgotten relation? Fluid Phase Equilib. 336, 22–27 (2012).
    DOI: 10.1016/j.fluid.2012.08.028
  109. U. K. Deiters, Efficient coding of the minimum image convention. Z. Phys. Chem. 227, 345–352 (2013).
    DOI: 10.1524/zpch.2013.0311
  110. R. Ludwig and U. K. Deiters (eds.), Special issue in honour of Prof. Dr. Andreas Heintz on the occasion of his 65th birthday. Z. Phys. Chem. 227(2–3) (2013).
  111. U. K. Deiters, Comments on the modeling of hydrogen and hydrogen-containing mixtures with cubic equations of state. Fluid Phase Equilib. 352, 93–96 (2013).
    DOI: 10.1016/j.fluid.2013.05.032
  112. U. K. Deiters, Thermodynamics—old science and new challenges, in: Proceedings of the 12th European Joint Thermodynamics Conference (eds. M. Pilotelli and G. P. Beretta), Cartolibreria Snoopy, Brescia, 2013, pp. 383–387.
  113. A. R. Imre, A. Baranyai, U. K. Deiters, P. T. Kiss, Th. Kraska, and S. E. Quiñones-Cisneros, Estimation of the thermodynamic limit of overheating for bulk water from interfacial properties. Int. J. Thermophys. 34, 2053–2064 (2013).
    DOI: 10.1007/s10765-013-1518-8
  114. U. K. Deiters and R. Macías-Salinas, The calculation of densities from cubic equations of state—revisited. Ind. Eng. Chem. Res. 53, 2529–2536 (2014).
    DOI: 10.1021/ie4038664
  115. E. Roeben, L. Roeder, S. Teusch, M. Effertz, U. K. Deiters, and A. M. Schmidt, Magnetic particle nanorheology. Colloid Polym. Sci. 292, 2013–2023 (2014).
    DOI: 10.1007/s00396-014-3289-6
  116. A. R. Imre, S. E. Quiñones-Cisneros, and U. K. Deiters, Adiabatic processes in the liquid–vapor two-phase region. 1. Pure fluids. Ind. Eng. Chem. Res. 53, 13529–13542 (2014).
    DOI: 10.1021/ie5022688
  117. P. Ramírez-González, S. E. Quiñones-Cisneros, and U. K. Deiters, Chemical potentials and fluid phase equilibria of Lennard-Jones chain fluids Mol. Phys. 113, 28–35 (2015).
    DOI: 10.1080/00268976.2014.941024
    temporary link to full-text PDF file
  118. A. R. Imre, C. Ramboz, U. K. Deiters, and Th. Kraska, Anomalous fluid properties of carbon dioxide in the supercritical region: Application to geological CO2 storage and related hazards. Environ. Earth Sci. 73, 4373–4384 (2015).
    DOI: 10.1007/s12665-014-3716-5
  119. A. R. Imre, S. E. Quiñones-Cisneros, and U. K. Deiters, Adiabatic processes in the liquid–vapor two-phase region. 2. Binary mixtures. Ind. Eng. Chem. Res. 54, 6559–6568 (2015).
    DOI: 10.1021/acs.iecr.5b01247
  120. Pham Van Tat and U. K. Deiters, Calculation of intermolecular potentials for H2–H2 and H2–O2 dimers ab initio and prediction of second virial coefficients. Chem. Phys. 457, 171–179 (2015).
    DOI: 10.1016/j.chemphys.2015.05.025
  121. U. K. Deiters and R. Macías-Salinas, The calculation of densities from cubic equations of state—revisited (Erratum). Ind. Eng. Chem. Res. 55, 2505 (2016).
    DOI: 10.1021/acs.iecr.6b00521
  122. U. K. Deiters and A. Neumaier, Computer simulation of the characteristic curves of pure fluids. J. Chem. Eng. Data 61, 2720–2728 (2016).
    DOI: 10.1021/acs.jced.6b00133
  123. U. K. Deiters, Differential equations for the calculation of fluid phase equilibria. Fluid Phase Equilib. 428, 164--173 (2016).
    DOI: 10.1016/j.fluid.2016.04.014
  124. U. K. Deiters, Comments on the Heidaryan–Jarrahian variant of the Redlich–Kwong equation of state. J. Supercrit. Fluids 117, 13–17 (2016).
  125. A. Neumaier and U. K. Deiters, The characteristic curves of water. Int. J. Thermophys. 37, #96 (2016).
    DOI: 10.1007/s10765-016-2098-1
  126. A. S. Lukyanova, U. K. Deiters, and I. L. Boshkova, Modeling of the velocity profile of near-critical fluids during laminar flow in a capillary (in Russian). Proceedings of the VIth International Scientific and Technical Conference “Kazakhstan-Refrigeration” 2016, T. K. Kulazhanova (ed.), Almaty Technical University, Almaty 2016.
  127. T. Pham Van and U. K. Deiters Calculation of second virial coefficients using ab initio intermolecular pair potentials for F2–F2 and H2–F2 dimers. Chem. Phys. 485–486, 67–80 (2017).
    DOI: 10.1016/j.chemphys.2017.01.003
  128. S. Yazdi Nezhad and U. K. Deiters, Estimation of the entropy of fluids with Monte Carlo computer simulation. Mol. Phys. 115, 1074–1085 (2017).
    DOI: 10.1080/00268976.2016.1238523
    temporary link to full-text PDF file
  129. U. K. Deiters, Differential equations for the calculations of isopleths of multicomponent fluid mixtures. Fluid Phase Equilib. 447, 72–83 (2017).
    DOI: 10.1016/j.fluid.2017.03.022
  130. E. Detmar, S. Yazdi Nezhad, and U. K. Deiters, Determination of the residual entropy of simple mixtures by Monte Carlo simulation. Langmuir 33, 11603–11610 (2017).
    DOI: 10.1021/acs.langmuir.7b02000
  131. G. Györke, U. K. Deiters, A. Groniewsky, I. Lassu, and A. R. Imre, Novel classification of pure working fluids for Organic Rankine Cycle. Energy 145, 288-300 (2018).
    DOI: 10.1016/j.energy.2017.12.135
  132. I. H. Bell and U. K. Deiters, On the construction of binary mixture p–x and T–x diagrams from isochoric thermodynamics. AIChE J. 64, 2745–2757 (2018).
    DOI: 10.1002/aic.16074
  133. U. K. Deiters, Modelling supercritical phase equilibria: problems and pitfalls. Period. Polytech. Chem. Eng. 63, 261–269 (2019).
    DOI: 10.3311/PPch.12757
  134. U. K. Deiters and R. J. Sadus, Two-body interatomic potentials for He, Ne, Ar, and Xe from ab initio data. J. Chem. Phys. 150, 134504:1-8 (2019).
    DOI: 10.1063/1.508542 accepted manuscript PDF file (1.1 MB)
  135. U. K. Deiters and R. J. Sadus, Fully a priori prediction of the vapor–liquid equilibria of Ar, Kr, and Xe from ab initio two-body plus three-body interatomic potentials. J. Chem. Phys. 151, 034509:1-8 (2019).
    DOI: 10.1063/1.5109052
  136. U. K. Deiters and I. H. Bell, Calculations of phase envelopes of fluid mixtures through parametric marching. AIChE J. 65, e16730:1–13 (2019).
    DOI: 10.1002/aic.16730
  137. U. K. Deiters and R. J. Sadus, Ab initio interatomic potentials and the classical molecular simulation prediction of the thermophysical properties of helium. J. Phys. Chem. B 124, 2268–2276 (2020).
    DOI: 10.1021/acs.jpcb.9b11108
  138. S. Stephan and U. K. Deiters, Characteristic curves of the Lennard-Jones fluid. Int. J. Thermophys. 41, 147:1–24 (2020).
    DOI: 10.1007/s10765-020-02721-9
  139. U. K. Deiters and I. H. Bell, Unphysical critical curves of binary mixtures predicted with GERG models. Int. J. Thermophys. 41, 169:1–19 (2020).
    DOI: 10.1007/s10765-020-02743-3
  140. U. K. Deiters and I. H. Bell, Differential equations for critical curves of fluid mixtures. Ind. Eng. Chem. Res. 59, 19062–19076 (2020).
    DOI: 10.1021/acs.iecr.0c03667
  141. E. L. Granados Bazán, S. E. Quiñones Cisneros, and U. K. Deiters, Interfacial properties of binary mixtures of Lennard-Jones chains in planar interfaces by molecular dynamics simulation. J. Chem. Phys. 154, 084704:1–19 (2021).
    DOI: 10.1063/5.0042340
  142. N. Dahmen, U. K. Deiters, and D. Tuma, D., In memoriam Prof. Dr. rer. nat. Gerhard Manfred Schneider (May 7, 1932 – October 16, 2020). J. Supercrit. Fluids 174, 105219:1–2 (2021).
    DOI: 10.1016/j.supflu.2021.105219
  143. I. H. Bell and U. K. Deiters, Superancillary equations for cubic equations of state, Ind. Eng. Chem. Res. 60, 9983–9991 (2021).
    DOI: 10.1021/acs.iecr.1c00847
  144. U. K. Deiters and R. J. Sadus, Interatomic interactions responsible for the solid–liquid and vapor–liquid phase equilibria of neon, J. Phys. Chem. B 125, 8522–8531 (2021).
    DOI: 10.1021/acs.jpcb.1c04272
  145. E. L. Granados Bazán, S. E. Quiñones Cisneros, and U. K. Deiters, Structure and contact angle in sessile droplets of binary mixtures of Lennard-Jones chains: a molecular dynamics study, Langmuir 37, 10945–10957 (2021).
    DOI: 10.1021/acs.langmuir.1c01354
  146. U. K. Deiters and I. H. Bell, Precise numerical differentiation of thermodynamic functions with multicomplex variables, J. Res. Natl. Inst. Stan. 126, 126033:1–26 (2021).
    DOI: 10.6028/jres.126.033
  147. I. H. Bell, U. K. Deiters, and A. M. M. Leal, Implementing an equation of state without derivatives: teqp, Ind. Eng. Chem. Res. 61, 6010–6027 (2022).
    DOI: 10.1021/acs.iecr.2c00237
  148. U. K. Deiters and R. J. Sadus, First principles determination of the solid–liquid–vapor triple point: the noble gases, Phys. Rev. E 105, 054128:1–5 (2022).
    DOI: 10.1103/PhysRevE.105.054128
  149. U. K. Deiters and R. J. Sadus, Accurate determination of solid–liquid equilibria by molecular simulation: behavior of Ne, Ar, Kr, and Xe from low to high pressures, J. Chem. Phys. 157, 204504:1–9 (2022).
    DOI: 10.1063/5.0125809
  150. I. H. Bell and U. K. Deiters, Superancillary equation for nonpolar pure fluid modeled with the PC-SAFT equation of state, Ind. Eng. Chem. Res. 62 1958-1967 (2023).
    DOI: 10.1021/acs.iecr.2c02916
  151. U. K. Deiters and R. J. Sadus, An intermolecular potential for hydrogen: Classical molecular simulation of temperature–density–pressure behavior, vapor–liquid equilibria, critical and triple point properties, J. Chem. Phys. 158, 194502 (2023).
    DOI: 10.1063/5.0148248
  152. NEW
    U. K. Deiters, Th. Kraska, High-Pressure Fluid Phase Equilibria — Phenomenology and Computation, 2nd edition, vol. 2 of Supercritical Fluid Science and Technology series, Elsevier, Amsterdam, 2024,
    ISBN 978-0-443-13280-3 (paperback), 978-0-13281-0.
    link to Elsevier bookshop

Diploma theses

  1. Heike Valentin née Büscher, Berechnung von Phasengleichgewichten in Mehrstoff-Systemen unter Verwendung von Zustandsgleichungen, Ruhr-Universität Bochum 1987.
  2. Christian Arabdiou, Bestimmung und Berechnung von Phasengleichgewichten in Zweistoffsystemen bei niedrigen Temperaturen und hohen Drücken, Ruhr-Universität Bochum 1987.
  3. Andreas Bolz, Systematische Untersuchung der Phasendiagrammklassen binärer fluider Mischungen unter Verwendung einer modifizierten Redlich–Kwong-Gleichung, Ruhr-Universität Bochum 1988.
  4. Wolfgang Rosenbleck, Berechnung von Fluid-Phasengleichgewichten in Mischungen polarer Substanzen bei hohen Drücken, Ruhr-Universität Bochum 1989.
  5. Volker Ehrenberg, Berechnung von Fest-fluid-Phasengleichgewichten bei hohen Drücken unter Berücksichtigung der Löslichkeit in der festen Phase, Ruhr-Universität Bochum 1989.
  6. Thomas Kraska, Systematische Untersuchung des globalen Phasenverhaltens binärer fluider Mischungen ausgehend von der Carnahan–Starling–Redlich–Kwong-Zustandsgleichung, Ruhr-Universität Bochum 1989.
  7. Gereon Hintzen, Berechnung von Fest–fluid-Phasengleichgewichten unter Berücksichtigung der Löslichkeit in der festen Phase, Ruhr-Universität Bochum 1991.
  8. Martin Bluma, Berechnung von Mehrphasengleichgewichten binärer fluider Mischungen unter hohen Drücken, Ruhr-Universität Bochum 1991.
  9. Jens Kohlbruch, Untersuchungen von Zustandsgleichungen mit einem neuartigen Repulsionsterm, Ruhr-Universität Bochum 1993.
  10. Martin Hornig, Vergleichende Untersuchung von Mischungstheorien und Berechnung von Phasendiagrammen binärer Mischungen, Universität zu Köln 1995.
  11. Matthias Hloucha, Monte-Carlo-Simulationen anisotrop polarisierbarer Moleküle am Beispiel Acetonitril, Universität zu Köln 1995.
  12. Kai O. Leonhard, Globale Monte-Carlo-Simulationen der Siedegleichgewichte von Neon und Argon mit der Gibbs-Ensemble-Methode, Universität zu Köln 1998.
  13. Orkid Coskuner, Quantenkorrekturen zu den thermodynamischen Funktionen von Neon, Universität zu Köln 2000.
  14. Sarah Fischer, Ein neuer Algorithmus zur Berechnung der kritischen Punkte von Mischungen, Universität zu Köln 2005.
  15. Björn Wittich, Einfluss der thermischen Zustandsgleichung auf die Viskositätsberechnung mit der Friktionstheorie, Universität zu Köln 2006.
  16. Mark Dörrstein, Verbesserung von Paarpotentialen für Computersimulationen aromatischer Verbindungen, Universität zu Köln 2012.
  17. Malte Flory, Calculating the Surface Tension of Pure Systems in ThermoC Based on Gradient Theory, Universität zu Köln 2012.

Master theses

  1. Sarah Segieth, Monte-Carlo-Simulationen an flexiblen Molekülen Universität zu Köln 2015.
  2. Jakob Schneider, Implementation of long-range Coulomb interaction for Monte Carlo simulations by particle--particle/particle--mesh Ewald summation Universität zu Köln 2016

Doctoral theses

  1. Andreas Bolz, Vergleichende Untersuchung globaler Phasendiagramme, Ruhr-Universität Bochum 1992.
  2. Thomas Kraska, Entwicklung einer Zustandsgleichung für fluide Reinstoffe unter Berücksichtigung des nahkritischen Gebietes, Ruhr-Universität Bochum 1992.
  3. Wolfgang Rosenbleck, Berechnung von thermodynamischen Eigenschaften polarer und assoziierender Stoffe anhand analytischer Zustandsgleichungen, Ruhr-Universität Bochum 1993.
  4. Martin Bluma, Berechnung der kritischen Eigenschaften ternärer Systeme, Ruhr-Universität Bochum 1994.
  5. Gereon Hintzen, Untersuchungen von nematisch–isotrop-Phasengleichgewichten binärer Systeme, Ruhr-Universität Bochum 1995.
  6. Jörg Cebulla, Untersuchung polarer und polarisierbarer Fluide mittels einer Monte-Carlo-Computersimulation, Universität zu Köln 1996.
  7. Jens Kohlbruch, Entwicklung einer Zustandsgleichung realer Fluide unter besonderer Berücksichtigung der Quanteneffekte, Universität zu Köln 1996.
  8. Martin Hornig, Entwicklung einer neuen Mischungstheorie für binäre fluide Mischungen, Universität zu Köln 2000.
  9. Matthias Hloucha, Monte-Carlo-Simulationen an polarisierbaren Flüssigkeitsmodellen von Fluormethanen, Universität zu Köln 1998.
  10. Christian Anders, Theoretische Untersuchungen von Zustandsgleichungen realer Fluide unter besonderer Berücksichtigung der Assoziationsparameter, Universität zu Köln 1999.
  11. Kai Schröder, Systematische Untersuchung des Phasendiagramm-Verhaltens einer Mxw2-vdW-Zustandsgleichung unter besonderer Berücksichtigung der Temperaturabhängigkeit des repulsiven und attraktiven Terms, Ruhr-Universität Bochum 1999.
  12. Kai O. Leonhard, Globale Simulationen von N2 und CO, Universität zu Köln 2001.
  13. Afshin E. Nasrabad, Global Simulation of Noble Gases and Their Binary Mixtures, Universität zu Köln 2003.
  14. Rozita Laghaei, Calculation of Phase Equilibria of Quantum Gases at High Pressures, Universität zu Köln 2003.
  15. Orkid Coskuner, Investigation of Hydrophobic Interactions by Monte Carlo Simulation, Universität zu Köln 2003.
  16. Pham Van Tat, Ab Initio Calculation of Intermolecular Potentials, Prediction of Second Virial Coefficients for Dimers H2–H2, H2–O2, F2–F2, and H2–F2, and Monte Carlo Simulations of the Vapor–Liquid Equilibria for Hydrogen and Fluorine, Universität zu Köln 2006.
  17. Björn Wittich, Die Bestimmung thermodynamischer Größen atomarer und molekularer ionischer Systeme mit Monte-Carlo-Simulationen unter Verwendung verschiedener Simulationsboxgeometrien, Universität zu Köln 2010.
  18. Simin Yazdi Nezhad, Calculation of entropy-dependent thermodynamic properties of fluids at high pressure with computer simulation, Universität zu Köln 2016.
  19. Mark Dörrstein, Monte-Carlo-Simulationen von Alkanen unter Verwendung des TraPPE-United-Atom-Kraftfelds und Untersuchung des Einflusses von Konformationen auf die thermodynamischen Eigenschaften, Universität zu Köln 2019.
  20. Eder L. Granados Bazán, Interfacial properties of binary mixtures of Lennard-Jones chains by molecular dynamics simulation, Universität zu Köln 2021.

University of Cologne
Faculty of Mathematics and Natural Sciences
Institute of Physical Chemistry

divider Group of Prof. (ret.) Dr. Ulrich K. Deiters

Thermodynamics and
Statistical Thermodynamics

research

contact

people

teaching

publications

software

links




ulrich.deiters@uni-koeln.de
April 16, 2024

Impressum
Data privacy stmt.